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Abstract
Neural networks without hierarchical biases of-
ten struggle to learn linguistic rules that come
naturally to humans. However, neural networks
are trained primarily on form alone, while chil-
dren acquiring language additionally receive
data about meaning. Would neural networks
generalize more like humans when trained on
both form and meaning? We investigate this by
examining if Transformers—neural networks
without a hierarchical bias—better achieve hi-
erarchical generalization when trained on both
form and meaning compared to when trained
on form alone. Our results show that Trans-
formers trained on form and meaning do favor
the hierarchical generalization more than those
trained on form alone, suggesting that statis-
tical learners without hierarchical biases can
leverage semantic training signals to bootstrap
hierarchical syntactic generalization.

1 Introduction

Language learners encounter sentences through
their surface forms: linear sequences of words.
However, syntactic rules are sensitive to sentences’
underlying hierarchical structure. What evidence
lets learners determine that syntactic rules operate
on hierarchical structure, rather than linear order?
Some contend that the evidence children receive is
insufficient for a learner without a hierarchical bias
to generalize hierarchically (Chomsky, 1968, 1971,
1980; Berwick et al., 2011). An alternative hypoth-
esis (e.g., Lewis and Elman, 2001) is that learners
require no innate hierarchical bias: the input chil-
dren get includes sufficient cues for hierarchical
generalization. Both sides, however, tacitly assume
that the data relevant for hierarchical generalization
is form alone (i.e., words and their linear order),
rather than form and meaning. Since meanings
involve hierarchical dependencies which often cor-
respond to syntactic structure (Partee et al., 1984),
they may provide additional cues to the hierarchical
syntactic generalization.

does

the newt

sleepdoes

(a) Hierarchical rule: Move
the auxiliary hierarchically
closest to the root to the front
of the sentence.

does the newt does sleep

(b) Linear rule: Move the
auxiliary linearly closest
to the left edge to the front
of the sentence.

Figure 1: Two possible rules for English yes/no question
formation. Modified from McCoy et al. (2020).

The rise of neural networks seems to suggest that
the focus on form is warranted: Networks trained
on form alone perform well on syntactic evalua-
tions (e.g., Gulordava et al., 2018; Wilcox et al.,
2018; Warstadt et al., 2020; Hu et al., 2020; Hueb-
ner et al., 2021). However, when networks’ input
aligns more closely with the sentences children get,
models fail to generalize hierarchically, suggesting
that attaining hierarchical generalization from form
alone requires stronger priors than those of stan-
dard neural architectures (Yedetore et al., 2023).

In this work, we test the hypothesis that learners
without a hierarchical bias can generalize hierarchi-
cally when trained on form and meaning. We train
Transformers (Vaswani et al., 2017), an architec-
ture known to prefer linear rules (Petty and Frank,
2021), to translate form to meaning, then test for
hierarchical generalization. Following McCoy et al.
(2020), our testbed for hierarchical generalization
is yes/no question formation, exemplified by the
relationship between declarative sentence (1a) and
yes/no question (1b). We train models on question
formation data like (1) which is consistent with a
hierarchical and a linear rule (see Figure 1).

(1) a. The newt does sleep.
b. Does the newt sleep?

To test for hierarchical generalization, we evaluate
models on examples like (2), where the hierarchical



rule predicts (2a), and the linear rule, (2b).

(2) The newt who does sleep doesn’t swim.
a. Doesn’t the newt who does sleep swim?
b. *Does the newt who sleep doesn’t swim?

We find that Transformers trained on form and
meaning display stronger preferences for the hierar-
chical rule than Transformers trained on form alone.
Our results support the hypothesis that semantic
training signals help statistical learners without hi-
erarchical biases learn hierarchical syntactic rules.1

2 Background

Meaning representations are not observable in the
mind. Forms, however, are observable. This asym-
metry makes reasoning about the effect of form on
generalization simpler than reasoning about mean-
ing’s effect by lessening the need to make assump-
tions about unobservable representations. Focusing
on forms, Chomsky (1971) observes that although
English speaking adults acquire the hierarchical
rule for yes/no question formation, children’s input
likely lacks the evidence ruling out the linear rule.
Chomsky (1971) conjectures that even a child who
never encounters such disambiguating examples
(e.g., (2a)) would generalize hierarchically, and ar-
gues that a innate hierarchical bias is thus necessary.
Empirically, Crain and Nakayama (1987) find that
children do behave consistently with the hierarchi-
cal rule, and rarely with the linear rule (Ambridge
et al., 2008), while disambiguating evidence is very
uncommon in children’s input (Pullum and Scholz,
2002; Legate and Yang, 2002).

Though such work makes a hierarchical bias
seem necessary for child-like generalization, do-
main general biases may suffice for hierarchical
generalization. To explore this possibility, several
studies have investigated how artificial learners gen-
eralize from form alone. Some argue that their re-
sults support an innate hierarchical bias (McCoy
et al., 2018; Yedetore et al., 2023), while others
argue against this conclusion (Lewis and Elman,
2001; Reali and Christiansen, 2005; Perfors et al.,
2011; Bod and Smets, 2012), and still others do not
take a strong stance (Frank and Mathis, 2007; Lin
et al., 2019; Warstadt and Bowman, 2020).

The direct precursors to our work also vary in
their conclusions. McCoy et al. (2020) and Petty
and Frank (2021) show that neural networks with-
out hierarchical biases trained on form alone in a

1GitHub repo with data and code: Will be released soon.

sequence-to-sequence setup generalize to the linear
rule of question formation. These results support
the claim that hierarchical generalization requires
a hierarchical bias. However, Murty et al. (2023a)
and Ahuja et al. (2024) find that models trained
in a language modeling setup on the McCoy et al.
(2020) and Petty and Frank’s (2021) data gener-
alize linearly early on, but ‘grok’ the hierarchical
generalization after training far beyond saturation
on in-domain performance.

Though the role of semantic information in the
acquisition of syntax has long been theorized (cf.
Chomsky (1965); Pinker (1979)), fewer studies
have explored semantic signals’ effect on hierarchi-
cal generalization. Studying children, Crain and
Nakayama (1987) find evidence against Stemmer’s
(1981) hypothesis about how meanings aid hierar-
chical generalization, but leave open the possibility
that meanings help in other ways. Morgan and
Newport (1981) find that visual context aided the
acquisition of constituent structure in adult learners
of an artificial language, though no more so than
adding explicit cues to constituent structure to the
forms. This finding with adults, however, does not
address how children generalize hierarchically dur-
ing first language acquisition. Using computational
modeling, Fitz and Chang (2017) show that net-
works with built-in linguistic knowledge general-
ize hierarchically when trained to map meaning to
form, and Abend et al. (2017) explore how seman-
tic training signals help a learner acquire syntactic
rules but use statistical modeling techniques that
presuppose that syntactic structures must be hier-
archical. It is an open question if learners without
such built-in knowledge generalize hierarchically
when trained on both form and meaning.

The hypothesis we test in this work is in the
spirit of the semantic bootstrapping hypothesis:
that children leverage sentences paired with struc-
tured meaning representations to acquire syntactic
rules (Abend et al., 2017). In this work, we gen-
eralize semantic bootstrapping to the problem of
determining that syntactic rules must be sensitive
to hierarchical structure rather than linear order.

3 Experiments

In this work, we train models to form yes/no ques-
tions in two ways. In Exp. 1 (Section 4), we
train neural networks in a sequence-to-sequence
setup on the objective of translating declarative
sentences to their yes/no question counterparts. We



use this setup to enable comparison to Petty and
Frank (2021) and McCoy et al. (2020). We then
test if models’ generalization behavior is more con-
sistent with the linear or the hierarchical rule.

In Exp. 2 (Section 5) we explore grokking: We
train models longer and track how training on form
and meaning changes models’ training dynamics.
We additionally train neural networks on the task
of language modeling (predicting the next word at
every point in a sentence), since grokking may de-
pend on this training objective (Ahuja et al., 2024).

In Exp. 3 (Sections 6 and 7) we vary the rep-
resentation of meaning and the translation task to
investigate several possible causes of the benefit of
training models to map form to meaning.

4 Experiment 1: Adding Meaning to
McCoy et al. (2020)

4.1 Framing of the Task
In this experiment, we compare the generalization
of sequence-to-sequence networks trained on form
alone with those additionally trained to translate
forms to meanings. Following McCoy et al. (2020),
models trained on form alone are tasked with map-
ping from declarative sentences to themselves as
in (3a), or to their yes/no question forms as in (3b),
where the input’s final token specifies the task.

(3) a. Input: the newt does sleep . DECL

Output: the newt does sleep .
b. Input: the newt does sleep . QUEST

Output: does the newt sleep ?

Models trained on form and meaning are addition-
ally tasked with translating declarative sentences
into logical representations of their meaning as in
(4), a task adapted from Kim and Linzen (2020).2

(4) Input: the newt does sleep . TRANS

Output: Sleep ( ι x . Newt ( x ) )

Crucially, all the training instances for the question
formation task are consistent with both the hierar-
chical and the linear generalizations (Figure 1). To

2We do not claim that the exact structured logical represen-
tations of meaning that we use in this work is a part of the input
that children explicitly receive. Rather, it is likely that seman-
tic cues available to children derive from language-external
modalities, such as visual input. The meaning representations
we provide in our experiments correspond to a conservative
upper bound to what the child could determine about the
meaning of the sentence that they heard, possibly leveraging
language-external cues. We seek to explore if under this ide-
alized scenario there are benefits to syntactic generalization,
which is a precondition to expecting benefits of noisier, more
realistic semantic signals.

evaluate what models learn from the training data,
we test models on examples like (2), for which the
hierarchical rule produces well-formed questions,
like (2a), while the linear rule produces ill-formed
questions, like (2b). Table 1 shows the distribution
of the training and evaluation data.

4.2 Datasets

We construct two synthetic datasets for this exper-
iment. FORM ALONE consists of data generated
using the probabilistic context-free grammar of Mc-
Coy et al. (2020), with slight modifications. Specif-
ically, we exclude the quantificational determiner
some to simplify the semantics, and modify the
sampling algorithm to balance the number of DECL

and QUEST examples.3 This dataset consists of
50,000 declarative-declarative pairs like (3a), and
50,000 declarative-question pairs like (3b).

The second dataset, FORM & MEANING, con-
sists of the data in FORM ALONE plus additional
input-output pairs generated by translating each in-
put sentence in FORM ALONE’s training set into
a logical representation of the sentence’s meaning,
as in (4). The translation is specified by a compo-
sitional semantics, listed in Appendix C.3.4 For
the meaning representation, we mostly follow the
assumptions of Coppock and Champollion (2022),
a textbook which employs notation that is standard
in the field of formal semantics, except that we sim-
plify the semantics by treating singular and plural
terms equivalently. For instance, the meanings of
both the newt does sleep, where the subject is sin-
gular, and the newts do sleep, where the subject is
plural, are represented as Sleep(ιx.Newt(x)).

The size of the test set and the generalization
set are both 10,000. The test set contains 5,000
declarative-declarative pairs, while the generaliza-
tion set contains only declarative-question pairs.
The test and generalization sets are the same for
FORM ALONE and FORM & MEANING.

4.3 Architectures and Training Setup

We use Transformers (Vaswani et al., 2017) in a
sequence-to-sequence setup following Petty and
Frank’s (2021) hyperparameters: 4 heads, embed-
ding size of 128, 3 layers, trained with early stop-
ping. Additionally, we use a batch size of 128, and
a patience of 5. We implement models with Open-

3See Appendix C for our grammar’s syntax & vocabulary.
4We implement the semantics to generate the translations

using the Lambda Notebook (BSD 3-Clause License):
https://rawlins.io/research/lambdanotebook/

https://rawlins.io/research/lambdanotebook/


DECL/QUEST TRANS

No RC

The newts do see the yak by the zebra.
→ The newts do see the yak by the zebra.
The newts do see the yak by the zebra.
→ Do the newts see the yak by the zebra?

The newts do see the yak by the zebra.
→ See(ιx.Newt(x), ιy.Yak(y)∧

By(y, ιz.Zebra(z)))

RC on
object

The newts do see the yak who doesn’t fly.
→ The newts do see the yak who doesn’t fly.
The newts do see the yak who doesn’t fly.
→ Do the newts see the yak who doesn’t fly?

The newts do see the yak who doesn’t fly.
→ See(ιx.Newt(x), ιy.Yak(y) ∧ ¬Fly(y))

The newts who don’t fly do see the yak.
→ The newts who don’t fly do see the yak.

RC on
subject

The newts who don’t fly do see the yak.
→ Do the newts who don’t fly see the yak?

The newts who don’t fly do see the yak.
→ See(ιx.Newt(x) ∧ ¬Fly(x), ιy.Yak(y))

Table 1: White cells (□) indicate the type of data in the FORM ALONE training set and the in-distribution test set.
Light gray cells (■) indicate the additional data in the FORM & MEANING training set. Dark gray cells (■) indicate
the generalization data. RC stands for “relative clause.” To save space, this table uses some words not present in the
vocabulary used to generate the training instances. For instance, fly is not in the vocabulary, though see is.

NMT (Klein et al., 2017).5 See Appendix A for
more hyperparameter details. We tokenize declara-
tives and questions by splitting at whitespaces, and
tokenize meaning representations as in (4).

4.4 Evaluation

Following McCoy et al. (2020), we use two evalua-
tion metrics: full sentence accuracy on the test set
(consisting of held out examples similar to those
seen in training), and first word accuracy on the
generalization set. Full sentence accuracy mea-
sures if the model’s output is exactly correct given
the input. The first word metric evaluates whether
the first word of the question is correct, abstract-
ing away from extraneous errors irrelevant to the
choice between hierarchical and linear generaliza-
tions (e.g., the model may incorrectly replace the
verb sleep with giggle). Crucially, the first word
of the question is sufficient to disambiguate the
linear and hierarchical rules. For instance, when
given (2) as an input, a model that has learned the
hierarchical rule would choose doesn’t as the first
word of the output, as in (2a), while a model that
has learned the linear rule would choose does as
the first word of the output, as in (2b).

4.5 Results

Across ten random reruns, Transformers trained
on FORM ALONE and those trained on FORM &
MEANING achieve perfect performance on the test
set: they always produce the full question correctly.

5https://github.com/OpenNMT/OpenNMT-py

This indicates that models successfully learned to
handle questions like those seen during training.
On the generalization set, models seldom produce
the full sentence correctly, replicating prior find-
ings (Petty and Frank, 2021). Turning to the more
lenient measure of first word accuracy, Transform-
ers trained on FORM ALONE generalize linearly
(choosing the linear option for 95% of the gen-
eralization sentences, and the hierarchical option
for 5%), again replicating prior findings of Petty
and Frank (2021). On the other hand, Transform-
ers trained additionally on meaning prefer the hi-
erarchical generalization (60% hierarchical, 40%
linear).6 See Figure 2 for a summary.

5 Experiment 2: Grokking

Recent work suggests that Transformer models dis-
play structural grokking: when trained past satura-
tion on in-domain accuracy, out-of-domain gener-
alization continues to improve, and eventually hi-
erarchical generalization is achieved (Murty et al.,
2023a). This raises the possibility that early stop-
ping caused the lack of hierarchical generalization
in Experiment 1. To explore the interaction be-
tween grokking and semantic training signals, we
train models on the datasets from Experiment 1
(namely FORM ALONE and FORM & MEANING),

6We also train models on the original (form alone) data
from McCoy et al. (2020), which includes some and has 8%
more DECL than QUEST examples, to ensure that our findings
are not due to our minor modifications to the sampling pro-
cess. We find similar results to those for FORM ALONE in
Experiment 1. See Appendix D.

https://github.com/OpenNMT/OpenNMT-py
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(b) Generalization Set

Figure 2: Plot (a) shows the full question accuracy on
the test set. Plot (b) shows the first word accuracy on the
generalization set. Results are averages across 10 ran-
dom reruns. Error bars are single standard deviations.

but far past the point of perfect in-domain accuracy.

5.1 Architecture and Training Setup

Since prior work (Ahuja et al., 2024) has found
that grokking varies according to the choice of
a sequence-to-sequence or a language modeling
setup, we use both in this experiment. For both
setups, we use hyperparameters following those in
Ahuja et al. (2024): 8 heads, embedding size of
512, 6 layers, word-level tokenization, and batch
size 8. We use the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.0001, and train
models for 300k steps, without early stopping.7

See Appendix A for more hyperparameters details.

5.2 Results

Our results are reported in Figure 3. With language
modeling, we find that models trained on FORM

ALONE do display grokking (i.e., they at first gen-
eralize linearly, but then shift to hierarchical gener-
alization after a long period of training), consistent
with the results in Murty et al. (2023a). However,
we observe large variability in generalization across
random seeds: some models display perfect hier-
archical generalization after 300k training steps,
while others only show a slight preference. In con-
trast to the FORM ALONE result, the Transformers
trained on FORM & MEANING exhibit on average
much stronger hierarchical generalization much
faster, with much less variability.

In the sequence-to-sequence setup, consistent
with the results in Ahuja et al. (2024), models
trained on FORM ALONE do not show grokking—

7We use Murty et al.’s (2023a) code for the language
modeling setup: https://github.com/MurtyShikhar/
structural-grokking
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Figure 3: Left: first word accuracy across 300k train-
ing steps for models trained on FORM ALONE (left) or
FORM AND MEANING (right), in a language model-
ing (top) or sequence-to-sequence (bottom) setup. The
black line indicates the average across 10 random reruns.
Light gray shaded areas are the minimum and maximum
values for any model at each training step across the 10
random reruns. All models reach in-domain saturation
(>99% full question accuracy) by 10k training steps.

they stay below 50% accuracy past 100k training
steps. On the other hand, when trained on FORM &
MEANING, these models quickly generalize hier-
archically, predominantly staying above 75% first
word accuracy after 10k training steps.

Overall, our results suggest that models trained
on form and meaning generalize more consistently
to the hierarchical rule than models trained on form
alone, and that this preference emerges much ear-
lier compared to models that exhibit grokking.

6 Experiment 3: Why Do the Meaning
Representations Help?

We found in Experiments 1 and 2 that adding mean-
ing to models’ training data resulted in a stronger
preference for hierarchical generalization. In this
experiment, we explore the following questions:

(5) a. How dependent is the increased preference
for hierarchical generalization on specific
aspects of the meaning representation?

b. Which aspects of the form-to-meaning
translation task aid hierarchical general-
ization?

We build seven new datasets: three designed to
address Question (5a) (Section 6.1), and four to
address Question (5b) (Sections 6.2 and 6.3).

https://github.com/MurtyShikhar/structural-grokking
https://github.com/MurtyShikhar/structural-grokking


Figure 4: The correlation
between the hierarchical
rule and the relation be-
tween the main auxiliary
(doesn’t) and the sentential
negation (¬). Compare to
the hierarchical rule in Fig-
ure 1.

¬
the
ιx.

newt
Newt(x)

sleepdoesn’t

Sleep

6.1 Specifics of the Meaning Representation?

One reason that the data in Experiments 1 and 2
may lead to hierarchical generalization is that the
relationship between the main auxiliary and the
first word of the question strongly parallels the re-
lationship between the negation’s location in the
declarative and in the meaning representation. For
instance, though models do not receive questions
like (6a), they do receive meanings like (6b), where
the relationship between the main auxiliary (don’t
in (6)) and the negation (¬ in (6b)) closely corre-
sponds to the relationship between that main aux-
iliary in the declarative and the first word in the
question in (6a). See Figure 4 for an illustration.

(6) the newts who do fly don’t see the yak .
a. don’t the newts that do fly see the yak ?
b. ¬See(ιx.Newt(x) ∧ Fly(x), ιy.Yak(y))

To test whether this close parallel is respon-
sible for the models’ preference for hierarchical
generalization, we remove the negation from the
dataset, transition to an event semantic representa-
tion where the element of meaning corresponding
to the auxiliary is no longer directly at the front
of the meaning representation, and introduce the
necessary variability in the auxiliary using tense.8

For example, (7a) translates to (7b):

(7) a. the newt did fly .
b. ∃e : Past(e) ∧ Fly(e, ιx.Newt(x))

Now the element of meaning corresponding to the
auxiliary is no longer directly at the front of the
meaning representation, due to ‘∃e :’. However,
the relationship between (7a) and (7b) still bears a
close correspondence to the hierarchical question
formation rule. As (8) shows, the tense predicate
(Past) corresponding to the main auxiliary (did) ap-
pears near the front of the meaning representation.

8To use the first word evaluation for hierarchical general-
ization, we require at least two distinct auxiliaries that share
the same number agreement marking (e.g., does and doesn’t).
Thus, we cannot remove negation without adding additional
auxiliaries. Here we add did.

(8) a. the newts who do fly did see the yak .
b. ∃e : (Past(e) ∧ See(e, ιx.Newt(x) ∧ ∃e′ :

Pres(e′) ∧ Fly(e′, x), ιy.Yak(y)))

For this reason, we explore an equivalent semantics
in which the tense predicate corresponding to the
main auxiliary is located at the end of the mean-
ing representation, as demonstrated in (9) and (10),
which are translations of (7a) and (8a), respectively.
If we see an equivalent boost in preference for hi-
erarchical generalization using this representation
scheme, this suggests that the similarity of the hier-
archical question formation rule and the placement
of negation at the front of the meaning representa-
tion is not the source of hierarchical generalization
in Experiments 1 and 2.

(9) ∃e : Fly(e, ιx.Newt(x)) ∧ Past(e)

(10) ∃e : (See(e, ιx.Newt(x) ∧ ∃e′ : Fly(e′, x) ∧
Pres(e′), ιy.Yak(y)) ∧ Past(e))

6.1.1 Datasets
We rename the datasets from Experiments 1
and 2 FORM[+neg] and MEANING[+neg] to
distinguish them from the datasets introduced
here. We introduce FORM[+tense], which is like
FORM[+neg] but differentiates auxiliaries with
tense. MEANING[+tensefirst] includes the exam-
ples in FORM[+tense] plus translations into a mean-
ing representation like (8b). MEANING[+tenselast]
is like MEANING[+tensefirst] but with representa-
tions as in (9) and (10).

6.1.2 Results
Figure 5 shows the results with the alternative
meaning representations. Here, models trained on
FORM[+tense] in a language modeling setup vary
in their generalization patterns, four of ten showing
a preference for the hierarchical generalization (af-
ter grokking), and six of ten showing a preference
for the linear generalization. Models trained in
the sequence-to-sequence setup on FORM[+tense]
display no hierarchical generalization.

Now we compare these results to those from
Experiment 2 (Figure 3). Though models trained
on FORM[+tense] in the the sequence-to-sequence
setup behave similarly to models trained on
FORM[+neg], the corresponding results in the lan-
guage modeling setup show differences. Specifi-
cally, there is more variability in the generalization
of the models trained on FORM[+tense] than the
models on FORM[+neg], with one choosing the
linear generalization even after 300k training steps.
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Figure 5: First word consistency with the hierarchical generalization for models trained on the [+tense] datasets.
Top: models trained in a language modeling setup. Bottom: models trained in a sequence-to-sequence setup. The
black line indicates the average across 10 random reruns. Light gray shaded areas are the minimum and maximum
values for any model at each training step across the 10 random reruns.

The relative difficulty models have with
generalizing hierarchically when trained on
FORM[+tense] makes the models’ generalization
to the hierarchical rule when trained on MEAN-
ING[+tensefirst] and MEANING[+tenselast] more
striking. Models in both the language modeling
and sequence-to-sequence setups trained on either
MEANING[+tensefirst] or MEANING[+tenselast]
display stronger hierarchical generalization than
when trained FORM[+tense]. These results suggest
that the similarity between the hierarchical ques-
tion formation rule and negation’s location in the
forms versus meanings does not account for Trans-
formers’ behavior in Experiments 1 and 2.

6.2 Relation Between Form and Meaning?

Turning to Question (5b): although we train models
to translate form to meaning, the meanings them-
selves may suffice for hierarchical generalization,
rendering the translation from forms to meanings
unnecessary. Here, we explore this possibility.

6.2.1 Dataset
The set of examples for this experiment (MEANING

TO MEANING) is the same as in Experiments 1 and
2, except the translation task now maps meanings
to themselves, rather than mapping declarative sen-
tences to their meanings. For instance, rather than
the tasks like in (4), in the new translation task the
inputs and outputs are meanings, as in (11).

(11) Input: Sleep ( ι x . Newt ( x ) ) . TRANS

Output: Sleep ( ι x . Newt ( x ) )

This manipulation ablates training signals about the
relationship between form and meaning, leaving
only the structures of the meanings themselves, and
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Figure 6: First word consistency with the hierarchical
generalization for models trained on the MEANING TO
MEANING dataset. The black line indicates the average
across 10 random reruns. Light gray shaded areas are
the minimum and maximum values for any model at
each training step across the 10 random reruns.

lets us test if the relationship between the declara-
tive forms and the meaning representations is criti-
cal for the benefit to hierarchical generalization.

6.2.2 Results

See Figure 6. Here, we see no benefit of training on
meaning beyond training on form alone: compare
the results in Figure 6 with the results in Experi-
ment 2 (Figure 3). These results suggest that mere
training on structured meaning representations is
not sufficient to induce hierarchical generalization.
More specifically, the benefit of training Transform-
ers to translate from form to meaning is not solely
due to the mere presence of hierarchical structure
in the meaning representations or to the increase in
the variety of data fed into the model. Rather, the
relation between form and meaning is critical.



6.3 Cues to Syntactic Structure in the
Meanings?

In these experiments, continuing to explore (5b),
we introduce syntactic translation tasks to deter-
mine the cause of the hierarchical generalization.

6.3.1 Datasets
For these datasets, we use the same grammar as in
Experiment 1 and 2. Our first dataset, IDENTIFY

MAIN AUXILIARY, as shown in (12a), explores the
possibility that a translation task in which models
need to identify the main auxiliary aids hierarchi-
cal generalization. Our second dataset, IDENTIFY

MAIN VERB, is exemplified in (12b).
Another possible reason for the benefit of the

meanings is that the meaning representation con-
tains hierarchical structure that is similar to the
syntactic structure underlying the sentence. Trans-
lating declarative to such hierarchical structures
might be the source of the hierarchical general-
ization. To explore this possibility, we introduce
CONSTITUENCY PARSING, shown in (12c).

(12) Input: the newt does sleep . TRANS

a. Output (IDENTIFY MAIN AUXILIARY):
the newt ( does ) sleep .

b. Output (IDENTIFY MAIN VERB):
the newt does ( sleep ) .

c. Output (CONSTITUENCY PARSING):
[ [ [ the newt ] [ does sleep ] ] . ]

6.3.2 Results
See Figure 7. In the language modeling setup,
models trained on IDENTIFY MAIN AUXILIARY

quickly generalize to the hierarchical rule with little
variation between random seeds. Models trained on
IDENTIFY MAIN VERB and on CONSTITUENCY

PARSING in the language modeling setup often
generalize to the hierarchical rule, though with
large variability. Models trained in the sequence-to-
sequence setup do not generalize to the hierarchical
rule, but instead prefer the linear rule.

Although training on IDENTIFY MAIN AUXIL-
IARY causes stronger hierarchical generalization
in the language modeling setup, IDENTIFY MAIN

VERB provides no benefit compared to FORM

ALONE in Experiment 2 (see Figure 3). These re-
sults support the conclusion that the task of translat-
ing sentences to hierarchical representations is not
the source of hierarchical generalization. Rather,
the benefit seems to be due to the requirement that
the neural network identify the main auxiliary.

This result suggests that, though other reasons
are possible, identifying the main auxiliary may
be key to hierarchical generalization. If so, the
reason for grokking on FORM ALONE could be
that cues in the training data make models identify
the main auxiliary as distinct from the first auxiliary.
One such cue is the presence of subject-auxiliary
agreement. We explore this possibility in the next
experiment.

7 Experiment 3.5: Ablating Agreement

In McCoy et al.’s (2020) grammar, the subject
agrees in number with the hierarchically deter-
mined main auxiliary, as shown in examples (13),
in which the number of the subject (newt vs. newts)
determines the form of the auxiliary (does vs. do).

(13) the [ newt
newts] [does

do ] sleep .

We hypothesize that the presence of subject-
auxiliary agreement drives the grokking of the
hierarchical generalization in models trained on
FORM[+neg]. We test this by removing the subject-
auxiliary agreement from the models’ training
data. Importantly, this ablation of subject-auxiliary
agreement does not fundamentally change the gen-
eralization problem the models face: the training
data is still ambiguous between the linear and hier-
archical rules shown in Figure 1.

7.1 Datasets
The datasets in this experiment are similar to those
in Experiments 1 and 2 (FORM[+neg] and MEAN-
ING[+neg]), except the grammar is modified to
exclude plural nouns and auxiliaries. This means
that the auxiliary does and doesn’t are present, but
do and don’t are excluded. These datasets, which
we call FORM[−agr] and MEANING[−agr] allow
us to test the extent to which structural grokking is
due the subject-auxiliary agreement.

7.2 Results
See Figure 8. When trained on FORM[−agr], eight
of the ten transformers generalize linearly from
step 50k on (100% linear, 0% hierarchical), while
two models generalize partially to the hierarchical
rule (43% and 67% hierarchical after 300k training
steps). This suggests that the source of structural
grokking in the language modeling setup is the
subject-auxiliary agreement, serving as a cue to
identify the main auxiliary.

On MEANING[−agr], models generalize hierar-
chically. These results are similar to the results



Identify Main Auxiliary Identify Main Verb Constituency Parsing
L

angu
age

M
odelin

g
S

eq
uence-to-

S
equence

0 100 200 300 0 100 200 300 0 100 200 300

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Training Step

F
ir

st
 w

or
d

 c
on

si
st

en
cy

 w
it

h
th

e 
hi

er
ar

ch
ic

al
 g

en
er

al
iz

at
io

n

Figure 7: First word consistency with the hierarchical generalization for models trained on the datasets containing
auxiliary tasks from Experiment 3. Top: models trained in a language modeling setup. Bottom: models trained in a
sequence-to-sequence setup. The black line indicates the average across 10 random reruns. Light gray shaded areas
are the minimum and maximum values for any model at each training step across the 10 random reruns.
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Figure 8: First word consistency with the hierarchical
generalization for models trained on the [−agr] datasets.
The black line indicates the average across 10 random
reruns. Light gray shaded areas are the minimum and
maximum values for any model at each training step
across the 10 random reruns.

on MEANING[+neg] in Experiment 2, and sug-
gest that the form to meaning translation allows
the models to generalize hierarchically even in the
absence of subject-auxiliary agreement.

8 Discussion

Across three experiments and several training se-
tups, we find that training models to translate from
form to meaning enables stronger hierarchical gen-
eralization than training on form alone. These re-
sults suggest that one avenue to hierarchical gener-
alization in learners without a hierarchical bias is
leveraging semantic signals in the training data.

For Transformers specifically, our results show
that Transformers generalize more like humans
when trained to translate forms to meanings than
when trained on form alone. In practice, this take-
away must be tempered by the possibility that the
large quantities of form that large language models
receive make the benefits of training to translate

form to meaning inconsequential. However, re-
cent results suggest that translations from forms
to meaning-like representations may provide bene-
fits even to language models trained at scale: Kim
et al. (2024) find that large language models trained
additionally on code performed better on a entity
tracking task. This benefit may be due to the the
presence of translations from natural language sen-
tences to code in the training data. Further work is
necessary to disentangle this possibility from other
possible contributing factors.

For child acquisition, our results suggest that
one possible source of hierarchical generalization
is the relationship between forms and meanings, so
long as children can construct logical meaning rep-
resentations either innately or develop this capacity
sometime before making hierarchical generaliza-
tions. The early development of such logical capa-
bilities is consistent with recent work on the logic
in infants (e.g., Cesana-Arlotti et al. 2018), though
this line of research is still in its early stages.

Though in this work we focus on meaning, it
may be that other language-external cues also fa-
cilitate hierarchical generalization. For instance,
prosody (Morgan and Demuth, 2014) may also
provide a hierarchical signal of a similar nature
to meanings, and visual information (Shi et al.,
2019; Wang et al., 2023) may provide informa-
tion about lexical semantics that is useful to deter-
mine how meanings must combine. Future work
should also better align the input with what chil-
dren get, perhaps following the lead of Yedetore
et al. (2023) and using a corpus of child-directed
speech as model training data, to strengthen the
inferences about the innate biases necessary for
children to acquire language.



Limitations

We view our behavioral analysis in this work as a
strong starting point for understanding how seman-
tic training signals affect generalization to hierar-
chical syntactic rules in Transformers. However,
we see it as critical that future work look into the
internal mechanisms of these models to determine
the computations underlying model behavior. This
will allow the determination of whether hierarchi-
cal generalization corresponds to hierarchical rep-
resentation, or if neural networks that generalize
hierarchically employ shortcut mechanisms that do
not involve hierarchical representation.

With respect to child acquisition, the connection
between our work and the acquisition problem chil-
dren face hinges on our assumption that the child
can recover a structured representation of the mean-
ing of a sentence from utterances and their contexts.
If children cannot construct structured representa-
tions of meaning given a sentence and its context,
our work may not bear on the language acquisition
problem. Future work is needed to determine the
nature of the meaning representations children can
recover from context.
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A Hyperparameters

For our experiments in both the language model-
ing and sequence-to-sequence setups, we addition-
ally use the following hyperparameters: AdamW
(β1: 0.9, β2: 0.999, ϵ: 1e-7), and linear warmup
scheduling for 10k steps. We clip gradients to have
a max L2 norm of 10, and tie input and output
embeddings for the encoder and decoder in the
sequence-to-sequence setup.

B Model implementation

OpenNMT (Klein et al., 2017), used in this work
for the sequence-to-sequence setup, has a MIT Li-
cense. Though the codebase developed in Murty
et al. (2023a), used in this work for the language
modeling setup, does not specify a license, that
code is built upon the codebase of Murty et al.
(2023b), which has a MIT License.

Models with trained using these codebases with
the hyperparameters from Appendix A have 18M
trainable parameters in the language modeling case,
and 25M in the sequence-to-sequence case, and
take 3 hours to train on Nvidia k80 GPUs. In-
cluding all models trained, our experiments take
approximately 1000 GPU hours.

C Grammars

C.1 Syntax

This grammar is similar to that of McCoy et al.
(2020) (See https://github.com/tommccoy1/
rnn-hierarchical-biases/blob/master/

cfgs/question.gr), but with the quantificational
determiner some removed in the vocabulary.

ROOT → S .

S → NP[m,s] VP[m,s]

S → NP[m,p] VP[m,p]

NP[m,s] → Det N[s]

NP[m,s] → Det N[s] RC[s]

NP[m,s] → Det N[s] Prep Det N[s]

NP[m,s] → Det N[s] Prep Det N[p]

NP[m,p] → Det N[p]

NP[m,p] → Det N[p] RC[p]

NP[m,p] → Det N[p] Prep Det N[s]

NP[m,p] → Det N[p] Prep Det N[p]

NP[m,o] → Det N[s]

NP[m,o] → Det N[p]

NP[m,o] → Det N[s] Prep Det N[s]

NP[m,o] → Det N[s] Prep Det N[p]

NP[m,o] → Det N[p] Prep Det N[s]

NP[m,o] → Det N[p] Prep Det N[p]

NP[m,o] → Det N[s] RC[s]

NP[m,o] → Det N[p] RC[p]

VP[m,s] → Aux[s] Vintrans

VP[m,s] → Aux[s] Vtrans NP[m,o]

VP[m,p] → Aux[p] Vintrans

VP[m,p] → Aux[p] Vtrans NP[m,o]

RC[s] → Rel Trace Aux[s] Vintrans

RC[s] → Rel NP[e,s] Aux[s] Vtrans Trace

RC[s] → Rel NP[e,p] Aux[p] Vtrans Trace

RC[s] → Rel Trace Aux[s] Vtrans Det N[s]

RC[s] → Rel Trace Aux[s] Vtrans Det N[p]

RC[p] → Rel Trace Aux[p] Vintrans

RC[p] → Rel NP[e,s] Aux[s] Vtrans Trace

RC[p] → Rel NP[e,p] Aux[p] Vtrans Trace

RC[p] → Rel Trace Aux[p] Vtrans Det N[s]

RC[p] → Rel Trace Aux[p] Vtrans Det N[p]

NP[e,s] → Det N[s]

NP[e,p] → Det N[p]
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C.2 Vocabulary
As can be determined from inspecting our vocabu-
lary, our data does not contain any information that
names or uniquely identifies individual people or
any offensive content.

N[s] → newt | orangutan | peacock | quail | raven |
salamander | vulture |walrus | yak | zebra |
xylophone | unicorn | tyrannosaurus

N[p] → newts | orangutans | peacocks | quails |
ravens | salamanders | vultures |walruses |
yaks | zebras | xylophones | unicorns |
tyrannosauruses

Vintrans → giggle | smile | sleep | swim |wait |
move | change | read | eat

Vtrans → entertain | amuse | highfive | applaud |
confuse | admire | accept | remember |
comfort

Prep → around | near | beside | upon | by | above |
behind | below

Det → the |my | your | her | our

Rel → that |who

Trace → t

C.3 Semantics
We do not handle plurals in our semantics (e.g.,
JnewtK = JnewtsK for all of the relevant cases)

We exclude some from our grammar due to
added syntactic/semantic complexities. The
quantificational determiner some introduces an
existential quantifier ∃. An example translation of
a sentence with some is shown in (14).

(14) The newt doesn’t see some yak.
a. ∃x.¬See(ιy.Newt(y), x) ∧ Yak(x)

Since some scopes above negation, either the
semantics requires an additional rule of type lifting,
or the syntax needs to be complicated to include
quantifier raising (Coppock and Champollion,
2022). We keep the grammar simple and of similar
complexity to prior work by excluding some.

JtheK := λf.ιx.f(x)

JmyK := λf.ιx.(f(x) ∧ Poss(Speaker, x))
JyourK := λf.ιx.(f(x) ∧ Poss(Addressee, x))
JherK := λf.ιx.(f(x) ∧ Poss(y, x) ∧ Female(y))
JourK := λf.ιx.(f(x) ∧ Poss(Speaker, x) ∧
Poss(Addressee, x))
JnewtK := λx.Newt(x)
JorangutanK := λx.Orangutan(x)
JpeacockK := λx.Peacock(x)
JquailK := λx.Quail(x)
JravenK := λx.Raven(x)
JsalamanderK := λx.Salamander(x)
JvultureK := λx.Vulture(x)
JwalrusK := λx.Walrus(x)
JyakK := λx.Yak(x)
JzebraK := λx.Zebra(x)
JxylophoneK := λx.Xylophone(x)
JunicornK := λx.Unicorn(x)
JtyrannosaurusK := λx.Tyrannosaurus(x)
JaroundK := λx.λy.Around(y, x)
JnearK := λx.λy.Near(y, x)
JbesideK := λx.λy.Beside(y, x)
JuponK := λx.λy.Upon(y, x)
JbyK := λx.λy.By(y, x)
JaboveK := λx.λy.Above(y, x)
JbehindK := λx.λy.Behind(y, x)
JbelowK := λx.λy.Below(y, x)

JgiggleK := λx.Giggle(x)
JsmileK := λx.Smile(x)
JsleepK := λx.Sleep(x)
JswimK := λx.Swim(x)

JwaitK := λx.Wait(x)
JmoveK := λx.Move(x)
JchangeK := λx.Change(x)
JreadK := λx.Read(x)
JeatK := λx.Eat(x)
JentertainK := λx.λy.Entertain(y, x)
JamuseK := λx.λy.Amuse(y, x)
JhighfiveK := λx.λy.Highfive(y, x)
JapplaudK := λx.λy.Applaud(y, x)
JconfuseK := λx.λy.Confuse(y, x)
JadmireK := λx.λy.Admire(y, x)
JacceptK := λx.λy.Accept(y, x)
JrememberK := λx.λy.Remember(y, x)
JcomfortK := λx.λy.Comfort(y, x)
JdoesK := λP.λx.P (x)

JdoK := λP.λx.P (x)

Jdoesn’tK := λP.λx.¬P (x)

Jdon’tK := λP.λx.¬P (x)
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Figure 9: The plot in (a) shows the full question ac-
curacy on the test set. The plot in (b) shows the first
word accuracy on the generalization set. Model results
across 10 random reruns. Error bars are single standard
deviations.

D Results on McCoy et al.’s (2020) Data

Here we compare the results when using the data
in McCoy et al. (2020), which we label ORIGINAL,
with the results reported in Experiment 1 and ex-
periment 2. Figure 9 (corresponding to Figure 2
in the main text) compares the results for the data
generated for Experiment 1 with the results using
the data in McCoy et al. (2020). Overall, models
trained on ORIGINAL and FORM ALONE general-
ized similarly on the in distribution test set and on
the generalization set.

Figure 10 (corresponding to Figure 3 in the main
text) compares the results on ORIGINAL, on FORM

ALONE, and on FORM & MEANING using the
evaluation setup reported for Experiment 2. Our
results here differ from those reported in Murty
et al. (2023a). This difference is due to choice of
random seeds. The 10 random seeds chosen in
Murty et al. (2023a) display hierarchical grokking
(namely, generalization to the hierarchical rule
after many training steps), but a few seeds
excluded from the results display systematic
generalization to the linear rule (see, e.g., seed
222 in https://github.com/MurtyShikhar/
structural-grokking/blob/main/all_test_
scores_lm.csv).

https://github.com/MurtyShikhar/structural-grokking/blob/main/all_test_scores_lm.csv
https://github.com/MurtyShikhar/structural-grokking/blob/main/all_test_scores_lm.csv
https://github.com/MurtyShikhar/structural-grokking/blob/main/all_test_scores_lm.csv
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Figure 10: First word consistency with the hierarchical generalization. Top: models trained in a language modeling
setup. Bottom: models trained in a sequence to sequence setup. The black line indicates the average across 10
random reruns. Light gray shaded areas are the minimum and maximum values for any model at each training step
across the 10 random reruns.


